Age-related transparent root dentin: mineral concentration, crystallite size, and mechanical properties.

نویسندگان

  • J H Kinney
  • R K Nalla
  • J A Pople
  • T M Breunig
  • R O Ritchie
چکیده

Many fractures occur in teeth that have been altered, for example restored or endodontically repaired. It is therefore essential to evaluate the structure and mechanical properties of these altered dentins. One such altered form of dentin is transparent (sometimes called sclerotic) dentin, which forms gradually with aging. The present study focuses on differences in the structure and mechanical properties of normal versus transparent dentin. The mineral concentration, as measured by X-ray computed microtomography, was significantly higher in transparent dentin, the elevated concentration being consistent with the closure of the tubule lumens. Crystallite size, as measured by small angle X-ray scattering, was slightly smaller in transparent dentin, although the importance of this finding requires further study. The elastic properties were unchanged by transparency; however, transparent dentin, unlike normal dentin, exhibited almost no yielding before failure. In addition, the fracture toughness was lowered by roughly 20% while the fatigue lifetime was deleteriously affected at high stress levels. These results are discussed in terms of the altered microstructure of transparent dentin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin

In clinical dentistry, since fracture is a major cause of tooth loss, better understanding of mechanical properties of teeth structures is important. Dentin, the major hard tissue of teeth, has similar composition to bone. In this study, we investigated the mechanical properties of human dentin not only in terms of mineral density but also using structural and quality parameters as recently acc...

متن کامل

A transmission electron microscopy study of mineralization in age-induced transparent dentin.

It is known that fractures are more likely to occur in altered teeth, particularly following restoration or endodontic repair; consequently, it is important to understand the structure of altered forms of dentin, the most abundant tissue in the human tooth, in order to better define the increased propensity for such fractures. Transparent (or sclerotic) dentin, wherein the dentinal tubules beco...

متن کامل

Variability in the elastic properties of bovine dentin at multiple length scales.

Various methods are used to investigate the variability in elastic properties across a population of deciduous bovine incisor root dentin samples spanning different animals, incisor types, and locations within teeth. First, measurements of elastic strains by high-energy synchrotron X-ray scattering during compressive loading of dentin specimens provided the effective modulus--the ratio of appli...

متن کامل

Microstructure and its Relationship to Mechanical Properties in Equal Channel Angular Rolled Al6061 Alloy Sheets

Equal channel angular rolling (ECAR) is a severe  plastic deformation (SPD) technique which has been used to produce metal sheets with ultra-fine grain structure. In the present work, the relationships between the mechanical properties and microstructure of samples during the ECAR process have been investigated. The Rietveld method was applied to analyze the X-ray diffraction pattern and to det...

متن کامل

Alkaline Material Effects on Roots of Teeth

The aim of this review was to identify and analyse all studies related to the effects of alkaline materials used in dentistry on roots of teeth. The first part of the review focused on mechanical property alterations of root dentine due to sodium hypochlorite (SH) used as an irrigant solution based on MeSH (Medical Subject Heading) terms from a previous study by Pascon et al in 2009. The second...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomaterials

دوره 26 16  شماره 

صفحات  -

تاریخ انتشار 2005